
QuantumCast Platform Documentation
Release 1.4.5.4

QuantumCast

Aug 25, 2023

OVERVIEW

1 What is QuantumCast? 3

2 Self-Service-Console 5

3 SpotControl 7

4 StreamControl 9

5 Notification Service 11

6 Streamrecorder 13

7 Audiostreamer 15
7.1 Features . 15
7.2 Ad-Features . 15

8 Metaflow 17

9 Adflow 19

10 Playoutflow 21

11 AudioPort 23

12 Transcoding 25

13 Playout 27

14 Audiolibrary 29

15 Audiotools 31

16 Sound processing 33
16.1 QuantumCast-Sound processing . 33
16.2 Stereo Tool . 33

17 Audiocache 35

18 Audiobutler 37

19 Dynamic Scheduling 39

20 QuantumCast-Sequence editor and Dynamic Scheduler 41

i

21 External scheduling tools – MusicMaster, GSelector or others 43

22 Skip-On-Radio 45

23 Timeshift 47

24 Playerservices 49

25 StreamRoute 51
25.1 Request listener audio streams . 51

26 Protected streams, Authentication 55

27 MetaSpreader 57

28 MetaPort 59

29 CloudConnect 61

30 Logimporter 63

31 LogProcessing 65

32 Data Analytics 67

33 APIs 69

34 Streamwatch 71

35 Advisor 73

36 Health 75

37 Developers 77
37.1 Listener ID and Meta ID . 77
37.2 Listener IDs and listener IDs containers (WORKING DRAFT) . 77
37.3 Metadata data-set reference . 79
37.4 MetaPort API Specification . 81
37.5 Playerservices Endpoints . 84
37.6 Integrating a TCF 2.0 CMP Consent . 87

38 Cloud Operators 89
38.1 Ad insertion capabilities . 89
38.2 Geoblocking / Geostreaming . 91
38.3 Authentication . 92
38.4 Auto switch to fallback stream . 92
38.5 Troubleshooting . 94
38.6 Logfileimport per Logimporter . 94
38.7 MetaPort . 98
38.8 MetaSpreader configuration settings . 99
38.9 MusicMaster Scheduling Workflow . 102

39 Indices and tables 109

HTTP Routing Table 111

Index 113

ii

QuantumCast Platform Documentation, Release 1.4.5.4

The home for audio cloud and learning for developers and technology professionals. Search our documentation re-
sources for QuantumCast products, developer guides and API references.

OVERVIEW 1

QuantumCast Platform Documentation, Release 1.4.5.4

2 OVERVIEW

CHAPTER

ONE

WHAT IS QUANTUMCAST?

QuantumCast-Audio cloud services is a large bundle of cloud-based audio services. The required orchestration for
enterprise applications is included in the QuantumCast product and can be customized. The of cloud-based services
bring very complex audio services with high-end features to your existing infrastructure. With many tools and real-time
data, you are in control of everything. Experts and coaches with special know-how support your team in the efficient and
scalable use, develop exclusive cloud features and interfaces, and give you important knowledge to save your success
of the digital transformation.

For more information please open a ticket:

Visit our company website:

3

QuantumCast Platform Documentation, Release 1.4.5.4

4 Chapter 1. What is QuantumCast?

CHAPTER

TWO

SELF-SERVICE-CONSOLE

The QuantumCast-Self-Service-Console is a web user interface to manage and control the essential services of Quan-
tumCast. It is possible to request and configure the following components and processes in the QuantumCast platform
independently and individually. All activities within the self-service console are executed immediately and fully auto-
matically within the QuantumCast platform.

Features:

• Create / edit / delete channel

• Configure channel

• Start / stop and configure Playout

• Configure playout sound processing

• Configure playout advanced automatic crossfading

• Start sequence editor and configure dynamic scheduler

• View / export playout protocol

• Create / delete source mounts

• Create / delete listener mounts with or without transcoding

• Create / edit / delete stream URL and configure StreamRoute

• Use stream URL generator to create stream urls for aggregators

• Start / stop and configure StreamControl

• Configure Adflow

• Configure Authentications

• Configure Metaport & Metaspreader

• Configure Channel Advanced settings & Global Advanced Settings

• Configure Connect your app

• Configure Log processing

• Configure User management

For more information please open a ticket:

Visit our company website:

5

QuantumCast Platform Documentation, Release 1.4.5.4

6 Chapter 2. Self-Service-Console

CHAPTER

THREE

SPOTCONTROL

QuantumCast SpotControl is real-time dashboard for TV, Desktop and mobile devices. This service in combination
with notifications results in a perfect monitoring solution to manage and control the advertisement business.

Features:

• Forecasts based on historical data

• Revenues per time unit

• Revenues / compare per time unit

• Type (preroll/midroll) per time unit

• Fill rate per time unit

• Spot requests per time unit

• Spot impressions per time unit

• Spot requests with no spot return per time unit

• Count successful beep detections per time unit

• Requested ad-duration and filled ad-duration in race

• Geo map with current spot playouts

• Filter for universal channel combinations and geo locations

7

QuantumCast Platform Documentation, Release 1.4.5.4

For more information please open a ticket:

Visit our company website:

8 Chapter 3. SpotControl

CHAPTER

FOUR

STREAMCONTROL

QuantumCast-Streamcontrol is a service for monitoring and controlling external audio sources with easy-to-use API.
The main target is the detection and quick elimination of errors in livestream infrastructures, e.g. connection problems
to the audio source for simulcast streams.

The following performance values are permanently monitored:

• Streaming connection

• Metadata

• Silence detection

Output:

• JSON

• Big Data storage

For more information please open a ticket:

Visit our company website:

9

QuantumCast Platform Documentation, Release 1.4.5.4

10 Chapter 4. StreamControl

CHAPTER

FIVE

NOTIFICATION SERVICE

Notification Service is a scalable and highly available system service for event-based messaging targeting Slack. De-
pending on the configuration, it is possible to assign a message or an alert to all events within the QuantumCast platform.
This is an essential tool to safely operate the platform.

For more information please open a ticket:

Visit our company website:

11

QuantumCast Platform Documentation, Release 1.4.5.4

12 Chapter 5. Notification Service

CHAPTER

SIX

STREAMRECORDER

The QuantumCast Streamrecorder is a web user interface to record your own and third-party channels on the internet.
The main target is analysing of quality and content of many audio streams, e.g. foreign and own program monitoring
for editors and program managers. Depending on the authorization, you can log in as administrator or normal user.
Administrators can edit and configure normal users and the record function.

For more information please open a ticket:

Visit our company website:

13

QuantumCast Platform Documentation, Release 1.4.5.4

14 Chapter 6. Streamrecorder

CHAPTER

SEVEN

AUDIOSTREAMER

QuantumCast Audiostreamer is a live streaming platform service for audio content own-developed by QuantumCast
digital GmbH. It is written in a modern programming language that enables all advantages of cloud infrastructures.
The software can stream in the following protocols, with ad insertion capability:

• ICY streams (MP3, AAC with included metadata)

• RAW Streaming (MP3, AAC without metadata)

• HLS streams

7.1 Features

• HTTP / HTTPs Audiostreaming

• Supports streaming ICY live streams

• Supports a variety of media formats as input

• Supports various ingestion methods (PUSH, RELAY)

• Secure token content protection

• Authenticated connections

• Data aggregations for Big Data analysis

• Automatic stream fallback to a second broadcast route or a cloud playout

7.2 Ad-Features

• Detecting ad break markers via metadata, flipbit (beep)

• Replacement of the original content with digital ads or an insertion of digital ads

• Full individual ad configuration per stream connection via tokens and parameter, e.g. personalized for a user, for
individual aggregators, apps, etc.

• Ad break opener and closer before and after ad insertion

• Stream opener for promoted streams

• Keep back spots via token

• Volume adjustments of spots

• Ad insertion capabilities (VAST4)

15

QuantumCast Platform Documentation, Release 1.4.5.4

• All Features from QuantumCast-Adflow

For more information please open a ticket:

Visit our company website:

16 Chapter 7. Audiostreamer

CHAPTER

EIGHT

METAFLOW

The Metaflow is a scalable solution with easy-to-use APIs for workflows with audio metadatas. The metadata will be
synchronized inside the audio stream as essential part of general system in real time for a channel in general and a
unique listener session. This allows metadata to be aligned with individual listener delays by inserted ads. Inside the
metadata different types of information can be transported, e.g. title, artist or cover, but also control commands and
opportunities to show commercials. If use the QuantumCast-Playoutflow, then the Metaflow is fully integrated.

Required services at external audio source:

• AudioPort

• MetaPort

Recommend services:

• Playerservices

Receives metadata via:

• MetaPort

Delivers metadata via:

• MetaSpreader

Tip: Related topics for DevOps

• Metadata data-set reference

• MetaPort API Specification

• MetaSpreader configuration settings

17

../_images/quantumcast-metaflow.png

QuantumCast Platform Documentation, Release 1.4.5.4

18 Chapter 8. Metaflow

CHAPTER

NINE

ADFLOW

Adflow is a scalable solution with easy-to-use tools for workflows with audio commercials. The commercials will be
processed in real time and individually for every listener. An advertisement agency with an VAST4 compatible ad
server is required. The QuantumCast-Adflow supports the following:

1. scenarios for ad delivery:

• Preroll

• Midroll

2. methods of detecting/trigger an ad break:

• Beep

• Flipbit

• Metadata

3. Ad server API:

• AdsWizz

• Adtonos

• AdAlliance (Smartclip)

• AdMediationService (AMS)

• Any VAST4 compatible AdServer

4. Big Data storage:

• QuantumCast-Big Data

5. Additional features:

• Easy configuration per web user interface in real time, e.g. zone_alias, drift, maxAds, duration, etc.

• IAB TCF v2 compliance

• Counting listening impressions of marked elements inside the streams without Ad server (QuantumCast-Big Data
required)

• All ad-features from QuantumCast-Audiostreamer

For more information please open a ticket:

Visit our company website:

19

QuantumCast Platform Documentation, Release 1.4.5.4

20 Chapter 9. Adflow

CHAPTER

TEN

PLAYOUTFLOW

Playoutflow is a scalable solution with easy-to-use tools for workflows with audio playouts.

Required services:

• Audiolibrary

• Scheduler

• Audio processing

• Playout

• Metaflow

Recommend services:

• Audiostreamer

• StreamRoute

• Playerservices

• Big Data control and analytics

• Business support

For more information please open a ticket:

Visit our company website:

21

QuantumCast Platform Documentation, Release 1.4.5.4

22 Chapter 10. Playoutflow

CHAPTER

ELEVEN

AUDIOPORT

The AudioPort is a scalable and highly available system service to receive audio streams and can receive in the following
protocols:

• ICY streams (MP3, AAC with included metadata)

• MP3, AAC, Ogg Vorbis, FLAC, WAV

Features:

• supports a variety of media formats as input

• supports various ingestion methods (PUSH, RELAY)

For more information please open a ticket:

Visit our company website:

23

QuantumCast Platform Documentation, Release 1.4.5.4

24 Chapter 11. AudioPort

CHAPTER

TWELVE

TRANSCODING

Easy-to-use scalable audio transcoding for on-demand audio and live audio. The transcoding is an automatically de-
ployed process per channel if necessary. It can be controlled in real-time via web interface.

Input-Formats:

• Everything that is supported by ffmpeg (mp3, aac, flac, wave)

Output-Formats:

• MP3 (several bitrates)

• AAC (several bitrates, HEv2)

• FLAC (compressed lossless)

For more information please open a ticket:

Visit our company website:

25

QuantumCast Platform Documentation, Release 1.4.5.4

26 Chapter 12. Transcoding

CHAPTER

THIRTEEN

PLAYOUT

Easy-to-use scalable solution to create a perfect short-lived or 24/7 audio program from audio elements. It is qualified
for a large and more than enough amount of playout deliveries. The playout system can be controlled via web interface
in real time.

Features:

• FM/DAB-radio-quality

• Perfect mixing for personalized, individual and broadcast playouts

• Sound processing before and after playout

• QuantumCast Metaflow included

• Real-time deployment and controlling

• Easy playout report

• Replay Gain support

• Advanced crossfading/mixing - automatically or with manual values

• Voice-track on ramp

• Drop in on ramp

• Voice-track over music bed, e.g. news

Stream Targets:

• QuantumCast Streamer

• Icecast

• SHOUTcast

• Wowza

• AIS

CDN Delivery:

• QuantumCast CDN

• Privat CDN on request

For more information please open a ticket:

Visit our company website:

27

QuantumCast Platform Documentation, Release 1.4.5.4

28 Chapter 13. Playout

CHAPTER

FOURTEEN

AUDIOLIBRARY

The QuantumCast Audiolibrary is a high-performance cloud storage for audio files incl. metadata with following
features:

Import:

• Schedules from MusicMaster, GSelector

• Schedules from API-based planning tools

• Schedules based on track tags

• Audiofiles upload with metadata

• FTP or S3-compatible API

• Browser upload via web frontend

• Metadata from MP3 ID3 container

Edit:

• Metadata via web frontend

Cluster:

• Static and dynamic smartblocks (folder) by audio metadata

Deliver to:

• QuantumCast-Sequence editor and dynamic scheduler

• QuantumCast-Playout

For more information please open a ticket:

Visit our company website:

29

QuantumCast Platform Documentation, Release 1.4.5.4

30 Chapter 14. Audiolibrary

CHAPTER

FIFTEEN

AUDIOTOOLS

The QuantumCast Audiotools are the universal and constantly growing in number of helpers for all situations with
easy-to-use API for individual workflows with audio contents.

Features:

• get audio properties

• replay gain (using mp3gain or loudgain)

• loudness

• bpm

• quality

Features - edit audio:

• Drop-in jingle on ramp

• Voice-track on ramp

• Voice-track over music bed

• Startnext / mixpoint based on db-level or loudness

• sound processing

• stereo tool with individual config

• overlay of multiple audio elements on background track

• pre-processed fade in/out, cue in/out

• transcoding

For more information please open a ticket:

Visit our company website:

31

QuantumCast Platform Documentation, Release 1.4.5.4

32 Chapter 15. Audiotools

CHAPTER

SIXTEEN

SOUND PROCESSING

Good audio processing can do wonders and help to reach great harmony for playout sound. QuantumCast can use all
kind of scalable software-based audio processors.

16.1 QuantumCast-Sound processing

The system standard of QuantumCast-Sound processing is a very light alignment of volume, so that the output of
playout is normalized to similar level of volume.

16.2 Stereo Tool

With QuantumCast is Stereo Tool available.

Requirements:

• valid license

• Stereo Tool config file (sts)

• QuantumCast-Business support level

For more information please open a ticket:

Visit our company website:

33

QuantumCast Platform Documentation, Release 1.4.5.4

34 Chapter 16. Sound processing

CHAPTER

SEVENTEEN

AUDIOCACHE

QuantumCast-Audiocache is an easy-to-use proxy service for audio files that stores content with individual lifetime.
For example, this service is recommended for complex audio pre-processing in front of playout.

For more information please open a ticket:

Visit our company website:

35

QuantumCast Platform Documentation, Release 1.4.5.4

36 Chapter 17. Audiocache

CHAPTER

EIGHTEEN

AUDIOBUTLER

QuantumCast-Audiobutler is an exploring and monitoring service for audio file web links or time-based configurations.
If the content of the audio file URL changes or a configured time range is reached, the service forwards audio files with
metadata as a part of:

• RSS-Feed

• JSON file

Tip: Get started QuantumCast Developers:

• audiobutlerapi

37

QuantumCast Platform Documentation, Release 1.4.5.4

38 Chapter 18. Audiobutler

CHAPTER

NINETEEN

DYNAMIC SCHEDULING

The scheduling system is an essential tool to sequence audio contents for personalized, individual and broadcast playout
processes. It supports short-lived and 24/7 audio programs. In the QuantumCast ecosystem you can choose what
scheduling system should be used.

For more information please open a ticket:

Visit our company website:

39

QuantumCast Platform Documentation, Release 1.4.5.4

40 Chapter 19. Dynamic Scheduling

CHAPTER

TWENTY

QUANTUMCAST-SEQUENCE EDITOR AND DYNAMIC SCHEDULER

The QuantumCast-Sequence editor is a web user interface to create an audio sequence from different audio sources,
e.g. QuantumCast-Audiolibrary, podcasts, news sources, etc.

The Dynamic Scheduler is necessary to schedule personalized, individual and broadcast audio programs. The scheduler
plans the program in real time. For personalized or on-demand channels, the scheduler switches to a special mode.
E.g. time-dependent elements are handling separately. Because it’s not possible to skip to them.

For more information please open a ticket:

Visit our company website:

41

QuantumCast Platform Documentation, Release 1.4.5.4

42 Chapter 20. QuantumCast-Sequence editor and Dynamic Scheduler

CHAPTER

TWENTYONE

EXTERNAL SCHEDULING TOOLS – MUSICMASTER, GSELECTOR
OR OTHERS

QuantumCast allows connectivity to external scheduling tool installations. Because the existing scheduling tools inte-
grations are very diverse, there is not only one way to connect QuantumCast. QuantumCast offers a standard way for
synchronizing with external schedules, but it can be adapted if it doesn’t match to an existing workflow. The enterprise
support level is required for further details.

For more information please open a ticket:

Visit our company website:

43

QuantumCast Platform Documentation, Release 1.4.5.4

44 Chapter 21. External scheduling tools – MusicMaster, GSelector or others

CHAPTER

TWENTYTWO

SKIP-ON-RADIO

QuantumCast-Skip-On-Radio is a special service for skipping elements inside of an audio program. The Quantum-
Cast platform creates a simply personalized audio stream after each skipping interaction. This function requires the
creation of an audio program with the QuantumCast-Playout and modified players with the skip button and a con-
nected QuantumCast-Skip-API. All modified players can use the advanced, personalized audio streaming functions.
The enterprise support level is required for further details.

For more information please open a ticket:

Visit our company website:

45

QuantumCast Platform Documentation, Release 1.4.5.4

46 Chapter 22. Skip-On-Radio

CHAPTER

TWENTYTHREE

TIMESHIFT

QuantumCast-Timeshift is a special service for time-shift broadcasts of audio programs. The QuantumCast platform
record the audio stream for later listening. The function can be controlled with user-friendly parameters in the stream-
URL. Recommended jump markers are automatically transferred via Metaflow. The enterprise support level is required
for further details.

For more information please open a ticket:

Visit our company website:

47

QuantumCast Platform Documentation, Release 1.4.5.4

48 Chapter 23. Timeshift

CHAPTER

TWENTYFOUR

PLAYERSERVICES

The QuantumCast Playerservices are a collection of scalable and highly available system services for player clients.
This system service delivers all types of metadata to player clients, e.g. web player, apps, skills, etc. With stream start
using a unique listener id, the client connects to QuantumCast-Player services and receives synchronized metadata
in real time for general or a unique listener session. Inside the metadata content several types of information can be
delivered, e.g. title, artist or cover, but also control commands and opportunities to show commercials. By now only
artist and track title together with a timestamp are garanteed to be delivered. The available data fields depened on what
the playout system sends to the metaport.

Protocols:

• HTTPs, HTTP (polling with server-side cache)

• Websockets (real-time)

Tip: Related topics for DevOps

• Playerservices Endpoints

• Metadata data-set reference

• Metaflow

49

QuantumCast Platform Documentation, Release 1.4.5.4

50 Chapter 24. Playerservices

CHAPTER

TWENTYFIVE

STREAMROUTE

StreamRoute is a scalable and highly available system service for effectively connects user stream requests to Au-
diostreamer infrastructure running in QuantumCast. The service can be available with own custom domain and auto-
matic https certifications.

Features:

• Generate listener IDs if necessary, based on client fingerprinting

• Responsible for aggregator detection

• Skip request specific handling

• Alias domain if required

• Forwarding parameters to QuantumCast-Audiostreamer or other Streamers

• Detour blacklist-IPs

• No pre-roll spot at specific aggregator requests, e.g. wake up alarm

• Generate PLS and M3U-Playlists on request over stream URL

• Create individual landing pages with metadata for aggregators

• Certification for listeners from own infrastructure

• GDPR no tracking option

• Special handling for special aggregators

All communications with QuantumCast user audio streams comprises of a set of parameters that can be passed in the
stream request. These parameters will capture sufficient details about the available opportunity and help serve a targeted
audio stream to the user.

25.1 Request listener audio streams

25.1.1 URL-Scheme

The URLs to request audio streams are systematized according to the following scheme: https://domain/
programkey/format/aggregator/listenerid/?parameters

51

QuantumCast Platform Documentation, Release 1.4.5.4

25.1.2 Parts of audio stream request

domain

StreamURL domain for this channel

Example streams.audiobrand.com

programkey

Short identifier of this stream name

Type string

Example chill

format

Codec and bit rate combined

Type string

Example mp3-192

aggregator

Optional aggregator identifier that should be displayed in the analytics dashbord

Type string

Example mywebsite or tunein

listenerid

Optional unique ID to identify the listener

Type string

Example 142e4f19b49da39529de786f81344b76

Hint: If you use a specific provider to generate the listener ID and use dependent functions, then please use the listener
IDs container.

• Build the listener IDs container

parameters

Optional URL parameters

Type string

Example tracking=true

25.1.3 Request audio streams via media file (m3u/pls/m3u8)

This is an extension of the standard URL-Scheme. To request media file playlists, add a file extension to the URL.

m3u

Example1 https://domain/programkey/format/play.m3u

Example2 https://domain/programkey/format/aggregator/play.m3u?parameters

Example3 https://domain/programkey/format/aggregator/listenerid/play.m3u?
parameters

52 Chapter 25. StreamRoute

QuantumCast Platform Documentation, Release 1.4.5.4

pls

Example1 https://domain/programkey/format/play.pls

Example2 https://domain/programkey/format/aggregator/play.pls?parameters

Example3 https://domain/programkey/format/aggregator/listenerid/play.pls?
parameters

m3u8

Example1 https://domain/programkey/format/play.m3u8

Example2 https://domain/programkey/format/aggregator/play.m3u8?parameters

Example3 https://domain/programkey/format/aggregator/listenerid/play.m3u8?
parameters

25.1.4 Parameters

tracking

This is a simple GDPR no tracking option. All parameters will be drop. Possible values are true and false. Default
value assumed is false.

Options true, false

Default true

Example tracking=false

Tip: Get started QuantumCast Developers:

• Integrating a TCF 2.0 CMP Consent

• vast4integration

25.1. Request listener audio streams 53

QuantumCast Platform Documentation, Release 1.4.5.4

54 Chapter 25. StreamRoute

CHAPTER

TWENTYSIX

PROTECTED STREAMS, AUTHENTICATION

This service is useful for special content without public access, e.g. behind a paywall. Protected streams are only
accessible with proper authentication. The authentication is based on user specific cryptographically secured JWT
(JSON Web Token) with a defined TTL. The enterprise support level is required for further details.

For more information please open a ticket:

Visit our company website:

55

QuantumCast Platform Documentation, Release 1.4.5.4

56 Chapter 26. Protected streams, Authentication

CHAPTER

TWENTYSEVEN

METASPREADER

The MetaSpreader is a scalable system solution to send current audio stream metadata to different receivers.

Supported receiver types:

• QuantumCast Audiostreamer

• JSON-HTTP push to external targets / URLs

• Icecast-Mounts

• AIS-Mounts

• Radioplayer

• radio.net

• FTP servers

Tip: Related topics for DevOps

• MetaSpreader configuration settings

• Metadata data-set reference

• MetaPort API Specification

• Metaflow

57

QuantumCast Platform Documentation, Release 1.4.5.4

58 Chapter 27. MetaSpreader

CHAPTER

TWENTYEIGHT

METAPORT

The MetaPort is a scalable and highly available system service to receive metadata with easy-to-use API. External
playout systems or other services can push metadata to a secured endpoint. This is a required service, if you use
external audio source(s) to push current metadata into your audio stream.

Supported data types:

• GET URL parameters

• POST JSON

• POST XML

Tip: Related topics for DevOps

• MetaPort API Specification

• Metadata data-set reference

• MetaSpreader configuration settings

• Metaflow

• Delay metadata

59

QuantumCast Platform Documentation, Release 1.4.5.4

60 Chapter 28. MetaPort

CHAPTER

TWENTYNINE

CLOUDCONNECT

With QuantumCast CloudConnect, existing customer infrastructure can be connected to the QuantumCast platform.
This enables all advantages and services of QuantumCast on external customer infrastructure. For example, existing
streaming server hardware can be controlled with QuantumCast-CloudConnect using the QuantumCast Self-Service
Console.

Features:

• Full access to QuantumCast Audio cloud services

• Full access to the QuantumCast-API

• Personal customer support in local language

Required:

• Enterprise support

For more information please open a ticket:

Visit our company website:

61

QuantumCast Platform Documentation, Release 1.4.5.4

62 Chapter 29. CloudConnect

CHAPTER

THIRTY

LOGIMPORTER

The QuantumCast-Logimporter is a (stand-alone) system service, which can be installed on your own streaming servers.
The service sends pre-processed logs of these streaming servers to the QuantumCast-Audio cloud services. This is
necessary to generate listener statistics and special log files, notifications and other statistical analyzations. You can
use Logimporter to stream logs to QuantumCast (“tail-mode”) on the fly or to send the content of a single file at once.

Cloud features:

• Can run as a docker container

• Health checks

• Anonymize ip addresses / GDPR compliant

• Supports time zones

Logimporter can work with log files from these streaming servers:

• Icecast

• Shoutcast 1

• Windows Media Server

• AIS (Ver. 7.x and 8.x)

Supported operating systems: Linux, Windows, BSD, MacOS

Tip: Get started with QuantumCast-Logimporter:

• Logfileimport per Logimporter

63

QuantumCast Platform Documentation, Release 1.4.5.4

64 Chapter 30. Logimporter

CHAPTER

THIRTYONE

LOGPROCESSING

The QuantumCast-LogProcessing service can create and provide log files for external service partners.

A solution is available for this service partner:

• ma IP Audio (Log file-based measurement of radio usage for German radio stations)

• Radioanalyzer - radioanalyzer.com

• AdsWizz Audiometricx

• Streamalyzer

It is also possible to export logs in generic Icecast, CSV or JSON formats.

For more information please open a ticket:

Visit our company website:

65

QuantumCast Platform Documentation, Release 1.4.5.4

66 Chapter 31. LogProcessing

CHAPTER

THIRTYTWO

DATA ANALYTICS

Using QuantumCast-Data Analytics enables access to your own raw data with special big data tools. The platform
generates millions of data logs per day, and store those to a high security big data cluster. The use is recommended
for data analysts with special knowledge. You can book training courses and get access. The business support level is
required for further details.

For more information please open a ticket:

Visit our company website:

67

QuantumCast Platform Documentation, Release 1.4.5.4

68 Chapter 32. Data Analytics

CHAPTER

THIRTYTHREE

APIS

An increasing number of APIs enables data exchange with external big data systems.

Currently available:

• Quantyoo

• Splunk

For more information please open a ticket:

Visit our company website:

69

QuantumCast Platform Documentation, Release 1.4.5.4

70 Chapter 33. APIs

CHAPTER

THIRTYFOUR

STREAMWATCH

The QuantumCast Streamwatch is an easy-to-use statistic and reporting tool to control the usage of all channels. It was
specially developed for program managers to get an overview of the most important values and is available as a desktop
and mobile version. It is easy to spot historical trends and the current usage.

The following KPIs are available, among others:

• Number of simultaneous listeners (ccu) in real time

• Active sessions / stream starts

• Average Active Sessions

• Average Time Spent Listening

• Total Listening Hours

• Bounce rate

• Aggregators (website, app, radio player, skill, etc.)

• Geo information based on the IP address

• Quarter Trends

• Calculated trend for current quarter

• Evaluation of best performances / records

For more information please open a ticket:

Visit our company website:

71

QuantumCast Platform Documentation, Release 1.4.5.4

72 Chapter 34. Streamwatch

CHAPTER

THIRTYFIVE

ADVISOR

QuantumCast offers the ability to book an advisor with in-depth knowledge of the big data pool to advise management
on the use of data and recommend new work methods that focus on data-driven workflows.

For more information please open a ticket:

Visit our company website:

73

QuantumCast Platform Documentation, Release 1.4.5.4

74 Chapter 35. Advisor

CHAPTER

THIRTYSIX

HEALTH

In addition to the listener usage data, data about the health status of the platform is continuously detected and stored.
QuantumCast-Health is a part of QuantumCast-Cloud Connect with enterprise support level. This real-time data can
be accessed after a training.

For more information please open a ticket:

Visit our company website:

75

QuantumCast Platform Documentation, Release 1.4.5.4

76 Chapter 36. Health

CHAPTER

THIRTYSEVEN

DEVELOPERS

This section of the documentation details the Developer APIs usable to connect with audio cloud services and other
details from QuantumCast.

37.1 Listener ID and Meta ID

A unique listener ID can and should be provided along with the stream URL to get best results from Adservers and
other services. By now we support one listener ID per stream. If you work with adswizz this could be the adswizz
listener ID.

There a multiple ways to provide a listener ID:

• As part of the virtual stream url: https://domain/programkey/format/aggregator/listenerid/?parameters

• As query parameter: https://domain/programkey/format/aggregator?listenerid=xyz

As the listener ID is especially important for ad insertion, we support a different ID that can be used along with listener
specific metadata that we call “Meta ID”.

You should provide a unique meta id for each listener if you want to use listener specific metadata. This works by
adding a query parameter metaid=xyz to the stream url.

https://domain/programkey/format/aggregator/listenerid/?otherparameter=123&metaid=xyz

You can than use the same meta id subscribe to metadata events and get the metadata for the listener. see: Playerservices

37.2 Listener IDs and listener IDs containers (WORKING DRAFT)

The following description is planned to be supported in the future and works as a working draft. QuantumCast supports
listener IDs. It is possible to pass one or more listener IDs in order to be able to use dependent functions.

If listener IDs have been integrated and a function requires it, QuantumCast uses the listener IDs and forwards them to
the associated provider.

77

https://domain/programkey/format/aggregator/listenerid/?parameters
https://domain/programkey/format/aggregator?listenerid=xyz
https://domain/programkey/format/aggregator/listenerid/?otherparameter=123&metaid=xyz

QuantumCast Platform Documentation, Release 1.4.5.4

37.2.1 Build the listener IDs container

Use an JSON array of identifiers with value to build the listener IDs container.

[
{ "identifierid": "value" },
{ "identifierid": "value" }

]

identifierid
Unique ID to identify the provider.

The identifierid should be as short as possible, and can contain lowercase alphanumeric characters.

Type string

Example adswizz

Hint: Please note the Predefined identifier IDs.

The ID can also be used without an associated provider. In this case use the identifierid = qc or the simple
listener ID transfer via stream URL: Parts of audio stream request

value
The value is the listernerID and should be a UUID.

Type string

Example ad82903a-7ba0-11ec-90d6-0242ac120003

37.2.2 Submit Listener IDs

Request a stream via StreamRoute and submit listener IDs container as a base64 encoded string.

idsv1
Parameter used to pass listener IDs container as a base64 encoded string through the stream uri

Example

idsv1=W3sicWMiOiI0ZThkNmQwNTEyOWI4ZDFjNmU2MTZiY2ZlYWIyYjlmMiJ9LHsiYWRzd2l6eiI6ICJFNDUzNTk1Mi02QkVGLTQxMjItOUNGMS1DQzFBOTUwQ0VCQzMifSx7InF1YW50eW9vIjogInh1bDhPbmdCSXMwOS1nOUptZmIyIn0seyJwbGF0Zm9ybWtleSI6ICJhcHAtbGlmZXJhZGlvLWF0In1d

37.2.3 Predefined identifier IDs

ID Provider Homepage
adswizz AdsWizz https://www.adswizz.com
qc QuantumCast https://www.quantumcast-digital.com
qy Quantyoo https://quantyoo.de

78 Chapter 37. Developers

https://www.adswizz.com
https://www.quantumcast-digital.com
https://quantyoo.de

QuantumCast Platform Documentation, Release 1.4.5.4

37.3 Metadata data-set reference

The Metaflow describes how the platform handles metadata. To get metadata from QuantumCast, use the MetaSpreader.
A metadata data-set contains the following data for each audio item:

{
"id": "ebbf8b04da405f51ad6aab607a7ffbe8",
"channelname": "Radio Brocken Lovesongs",
"channelshortname": "RB Lovesongs",
"time": "2021-02-18T20:55:38Z",
"duration": "227",
"song": "Naked",
"artist": "James Arthur",
"channelkey": "fhl_rbroos7_klun3",
"brandid": "radiobrocken",
"cover": "https://cloudspace/cover.jpg",
"separator": "-",
"timezone": "UTC",
"etype": 1001

}

id
Unique ID to identify the metadata set

Example ebbf8b04da405f51ad6aab607a7ffbe8

channelname
Name of the stream

Example Radio Brocken Lovesongs

channelshortname
Short-name of the stream

Example RB Lovesongs

time
ISO 8601 combined date-time format

Example 2021-02-18T20:55:38Z

duration
Duration of the audio element in seconds

Example 227

song
Title of the audio element

Example Naked

artist
Artist of the audio element

Example James Arthur

channelkey
Unique key / ID of the channel

Example fhl_rbroos7_klun3

37.3. Metadata data-set reference 79

QuantumCast Platform Documentation, Release 1.4.5.4

brandid
Brand ID for this channel

Example radiobrocken

timezone
Time zones represented by alphabetic abbreviations

Example UTC

etype
Content-type ID of the audio item as an integer

Default 0

Example 1001

Type ID
unknown 0
Jingles 101
Promo 102
Advertising 103
News 104
Article 105
Music 1 1001
Music 2 1002
Music 3 1003
Music 4 1004
Music 5 1005
Music 6 1006
Music 7 1007
Music 8 1008

cover
Url of the cover image

Example https://cloudspace/cover.jpg

separator
Ability to specify the separator between artist and song. This is sometimes relevant to optimize the frontend
view.

Example -

Tip: Related topics

• MetaSpreader configuration settings

• MetaPort API Specification

• Metaflow

80 Chapter 37. Developers

QuantumCast Platform Documentation, Release 1.4.5.4

37.4 MetaPort API Specification

Developer’s guide to submitting external metadata to Metaflow and into your audio stream.

The Metaflow describes how the platform handles metadata. To push metadata to QuantumCast, use the MetaPort. This
is a required service, if you are using own (encoded) external audio source(s) and you will push current metadata
into your audio stream.

37.4.1 Push metadata

GET https://metadata.streamabc.net/metapush/(string: channelkey)/
string: token Send metadata to your audio stream. channelkey and token can be found in your own Self-
Service-Console.

• channelkey - unique key / ID of the stream.

• token - MetaPort Token for this channel

Query Parameters

• song (string) – song name (can be empty)

• artist (string) – artist name (can be empty)

• encoding (string) – utf8 oder windows - default (if not specified): utf8, for Windows
ISO8859-1 is used for song/artist

• duration (int) – Length of the song in seconds

• time (string|int) – if int: unix timestamp | if string: time in RFC 3339 format, default
(if not specified): current time is used

• tracktype (string) – type of record, now for current track, next for following track, de-
fault (if not specified): now

• etype (int) – Content-type ID of the audio item as an integer

default 0

Type ID
unknown 0
Jingles 101
Promo 102
Advertising 103
News 104
Article 105
Music 1 1001
Music 2 1002
Music 3 1003
Music 4 1004
Music 5 1005
Music 6 1006
Music 7 1007
Music 8 1008

• id (string) – reference ID of the element (internal ID for evaluation, can be empty)

37.4. MetaPort API Specification 81

QuantumCast Platform Documentation, Release 1.4.5.4

• isrc (string) – ISRC (can be empty)

• separator (string) – separator between artist and song, default is ” - “

Example request:

Bash

$ curl https://metadata.streamabc.net/metapush/qc_fkvwoo65bsvz_tuzx/bPlfFlFpEw27We6a

POST https://metadata.streamabc.net/metapush/(string: channelkey)/
string: token Send metadata to your audio stream. channelkey and token can be found in your own Self-
Service-Console.

• channelkey - unique key / ID of the stream.

• token - MetaPort Token for this channel

Example request:

Bash

$ curl https://metadata.streamabc.net/metapush/qc_fkvwoo65bsvz_tuzx/bPlfFlFpEw27We6a -X POST -H "Content-Type: application/json" -d @body.json

The content of body.json has the following structure:

{
"id":"",
"time":"2021-09-01T16:11:49Z",
"duration":210,
"song":"Song Name",
"artist":"Artist Name",
"cover":"https://cover.url",
"images": {

"small": {
"url": "https://cover.url"

},
"medium": {

"url": "https://cover.url"
},
"large": {

"url": "https://cover.url"
}

},
"album":"Album Name",
"separator":" - ",
"timezone":"UTC",
"etype":0,
"tracktype":"now"
"isrc": "",
"extdata": {

"extData1": "...",
"extDataN": "..."

},
"externalid": {

"zenonid": "12344",
(continues on next page)

82 Chapter 37. Developers

QuantumCast Platform Documentation, Release 1.4.5.4

(continued from previous page)

"otherid": "abcdsd"
}

}

Response JSON Object

• id (string) – unique ID of the metadata element, if empty a UUID will be generated

• time (time.Time) – RFC3339 format, if empty the current time will be used

• duration (int) – length of the audio item in seconds (mandantory)

• song (string) – song name (mandantory)

• artist (string) – artist name (mandantory)

• cover (string) – cover URL (can be empty)

• images (object) – object of several image sizes (can be empty)

• album (string) – album name (can be empty)

• separator (string) – chars to separate artist and song in stream metadata, default is ” - “

• timezone (string) – time zone, should be UTC

• etype (int) – element type of the audio item as an integer

• tracktype (string) – type of track data, one of now or next

• isrc (string) – ISRC value of the audio item (can be empty)

• extdata (object) – object of external data, will be passed untouched

• externalid (string) – external ID of the metadata element with sub-items; you can choose
this metadata element itself, but it must be uniform

Example response:

{
"time":"2021-09-01T16:11:49Z",
"start":"01.09.2021 16:11:49",
"start_timestamp":1630512709,
"duration":210,
"song":"",
"artist":"",
"code":"qc_fkvwoo65bsvz_tuzx",
"channelkey":"qc_fkvwoo65bsvz_tuzx",
"timezone":"UTC",
"channel":"qc_fkvwoo65bsvz_tuzx",
"id":"",
"userplayout":false,
"separator":" - ",
"etype":0,
"album":"",
"type":"now",
"isrc":""

}

37.4. MetaPort API Specification 83

QuantumCast Platform Documentation, Release 1.4.5.4

Response JSON Object

• time (time.Time) – start time in RFC3339 format

• start (string) – local date-time

• start_timestamp (int64) – unix timestamp

• duration (int) – Length of the audio item in seconds

• song (string) – song name

• artist (string) – artist name

• code (string) – code (legacy field for channelkey)

• channelkey (string) – channelkey - unique key / ID of the stream

• timezone (string) – time zone of the time specification

• channel (string) – channelkey - unique key / ID of the stream

• id (string) – reference ID

• userplayout (bool) – default: false | true in case of personalized audio stream

• separator (string) – separator between artist and song, default is ” - “

• etype (int) – element type of the audio item as an integer

• type (string) – type of track data one of now or next

• isrc (string) – ISRC of the audio item

Tip: OpenAPI Specification

• https://metadata.streamabc.net/openapi/api.json

• https://metadata.streamabc.net/openapi/api.yaml

Related topics

• Metadata data-set reference

• MetaSpreader configuration settings

• Metaflow

37.5 Playerservices Endpoints

Warning: Deprecation notice

The old endpoint that start with https://playerservices.streamabc.net are deprecated and continue to work for a while
but get no updates and are not high available anymore. Please migrate to the new endpoints mentioned below.

37.5.1 Polling

https://api.streamabc.net/metadata/channel/{channelkey}.json (Channel JSON Polling) https:/
/api.streamabc.net/metadata/channel/{channelkey}.txt (Channel TXT Polling) https://api.
streamabc.net/metadata/station/{stationkey}.json (Station JSON Polling, metadata for all channels

84 Chapter 37. Developers

https://metadata.streamabc.net/openapi/api.json
https://metadata.streamabc.net/openapi/api.yaml
https://playerservices.streamabc.net

QuantumCast Platform Documentation, Release 1.4.5.4

of this station) https://api.streamabc.net/metadata/listener/{metaid}.json (Listener JSON Polling,
metadata a specific listener, please consider using Websockets here)

37.5.2 Websockets

wss://api.streamabc.net/metadata/listener/{metaid} (Websockets Listener Metadaten) wss://api.
streamabc.net/metadata/channel/{channelkey} (Websockets Channel Metadaten) wss://api.streamabc.
net/metadata/station/{stationkey} (Websockets Station Metadaten)

To use the websockets endpoints you need to subscribe and listen for incoming JSON messages. There are PING
messages that are sent to keep the connection alive and that have to be answered with PONG messages. The browser
implementation of the websockets API usually does this automatically.

A simple Javascript browser example can be found here:

<pre id="now"></pre>
<pre id="next"></pre>
<pre id="status"></pre>
<script>

const now = document.getElementById("now");
const next = document.getElementById("next");
const status = document.getElementById("status");
const socket = new WebSocket("wss://api.streamabc.net/metadata/channel/qc_

→˓fkvwoo65bsvz_tuzx");

socket.onopen = function () {
status.innerHTML += "Status: Connected\n";

};

socket.onclose = function () {
status.innerHTML += "Status: Disconnected\n";

};

socket.onmessage = function (e) {
const metadata = JSON.parse(e.data);
console.log(metadata);
if (metadata.type === "next") {

next.innerHTML = "Es folgt: " + metadata.song + " von " + metadata.artist;
} else {

now.innerHTML = "Es läuft: " + metadata.song + " von " + metadata.artist;
}

};
</script>

37.5. Playerservices Endpoints 85

QuantumCast Platform Documentation, Release 1.4.5.4

37.5.3 Listener specific Metadata

In order to activate listener specific metadata you need to start a stream by providing a unique meta id for each listener
as query parameter metaid as part of the stream url.

You than use the same meta id to either subscribe to the websocket or access the polling endpoint.

Tip: Related topics

• Metadata data-set reference

• Description of Playerservices

• Metaflow

• Listener ID and Meta ID

GET https://api.streamabc.net/metadata/channel/(string: channelkey).json
Example request:

Bash

$ curl https://api.streamabc.net/metadata/channel/qc_fkvwoo65bsvz_tuzx.json

Example response:

{
"rawdata": "",
"userplayout": false,
"channel": "QuantumCast ShowCase Sequenz",
"session": "",
"position": "c9eb8216c09ccf4541edadee70178aa1",
"marker": "",
"id": "",
"mount": "",
"channelkey": "qc_fkvwoo65bsvz_tuzx",
"timestamp": "2021-12-01T17:58:32Z",
"artist": "Adele",
"song": "Someone Like You",
"station": "quantumcast",
"start": "01.12.2021 17:58:32",
"duration": 294,
"start_timestamp": 1638381512,
"type": "now",
"etype": 1008

}

Response JSON Object

• time (time.Time) – ISO 8601 combined date-time format

• start (string) – local date-time

• start_timestamp (int64) – unix timestamp

• duration (int) – Length of the audio item

• song (string) – song name

86 Chapter 37. Developers

QuantumCast Platform Documentation, Release 1.4.5.4

• artist (string) – artist name

• code (string) – code

• channelkey (string) – channelkey - unique key / ID of the stream

• timezone (string) – time zone of the time specification

• channel (string) – channelkey - unique key / ID of the stream

• id (string) – reference ID

• userplayout (bool) – default: false | true in case of personalized audio stream

• separator (string) – separator between artist and song, default is ” - “

• etype (int) – Content-type ID of the audio item as an integer

• type (string) – type of record

• isrc (string) – ISRC of the audio item

37.6 Integrating a TCF 2.0 CMP Consent

QuantumCast is a IAB Vendor and it is possible to use a TCF 2.0 (https://iabeurope.eu/tcf-2-0/) compliant Consent
Management Platform to handle the listener’s consent.

When a CMP has been integrated, QuantumCast will pass the audio user’s specific consents onto any approved IAB
Vendor that are part of the Global Vendor List <https://vendor-list.consensu.org/v2/vendor-list.json>.

37.6.1 Uri parameters

Request a stream via StreamRoute and use following parameters:

cstring
Parameter used to pass TCF2 consent string through the stream uri, if CMP is using

Example

cstring=CO2rS1-O2rS1-AGABCENAtCsAP_AAH_AAAwIGGNV_T5fb2vj-3Z99_tkaYwf95y3p-wzhheMs-
→˓8NyYeH7BoGP2MwvBX4JiQKGRgksjKBAQdtHGhcSQgBgIhViTKMYk2MjzNKJLJAilsbO0NYCD9mnsHT3ZCY70-
→˓vu__7P3ffwMMar-ny-3tfH9uz77_bI0xg_
→˓7zlvT9hnDC8ZZ94bkw8P2DQMfsZheCvwTEgUMjBJZGUCAg7aONC4khADARCrEmUYxJsZHmaUSWSBFLY2doawEH7NPYOnuyEx3p9fd_
→˓_2fu-_gAA.YAAAAAAAAAA

aw_0_req.userConsentV2
Adswizz AIS compatible parameter used to pass TCF2 consent string, if CMP is using - QuantumCast Au-
diostreamer and StreamRoute supports this parameter

Example

aw_0_req.userConsentV2=CO2rS1-O2rS1-AGABCENAtCsAP_AAH_AAAwIGGNV_T5fb2vj-3Z99_
→˓tkaYwf95y3p-wzhheMs-
→˓8NyYeH7BoGP2MwvBX4JiQKGRgksjKBAQdtHGhcSQgBgIhViTKMYk2MjzNKJLJAilsbO0NYCD9mnsHT3ZCY70-
→˓vu__7P3ffwMMar-ny-3tfH9uz77_bI0xg_
→˓7zlvT9hnDC8ZZ94bkw8P2DQMfsZheCvwTEgUMjBJZGUCAg7aONC4khADARCrEmUYxJsZHmaUSWSBFLY2doawEH7NPYOnuyEx3p9fd_
→˓_2fu-_gAA.YAAAAAAAAAA

37.6. Integrating a TCF 2.0 CMP Consent 87

https://iabeurope.eu/tcf-2-0/
https://vendor-list.consensu.org/v2/vendor-list.json

QuantumCast Platform Documentation, Release 1.4.5.4

aw_0_req.gdpr
Adswizz compatible parameter used to pass GDPR handle, if no CMP is using - QuantumCast Audiostreamer
and StreamRoute supports this parameter

Example aw_0_req.gdpr=true

88 Chapter 37. Developers

CHAPTER

THIRTYEIGHT

CLOUD OPERATORS

This section of the documentation details the Cloud Operators opportunities usable to control and configure audio cloud
services and other details from QuantumCast.

38.1 Ad insertion capabilities

Following is a list of special options and configuration regarding audio advertising.

38.1.1 Opener and closer - instream / midroll

Configure opener and closer of instream ads.

Supported format: mp3, wav

{
"ad_instream_opener": [

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/563935__
→˓fester993__guitar-trombone-reverb.wav"
],
"ad_instream_closer": [

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/564003__
→˓rasmuspnielsen__low-hum-32-hz.wav",

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/564309__
→˓keybal__thermal-sniper-shot-3.wav",

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/563850__
→˓nikplaymostories__fail-trombone-wah-wah-wah-sound-effect.mp3"
]

}

38.1.2 Opener - preroll

Configure opener for preroll.

Supported format: mp3, wav

Set ad_force_preroll_opener to true if the opener should always be included, e.g. in the case of sponsored
channels, the opener is always inserted at the start of the session.

89

QuantumCast Platform Documentation, Release 1.4.5.4

{
"ad_preroll_opener": [

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/563935__
→˓fester993__guitar-trombone-reverb.wav"
],
"ad_force_preroll_opener": "true"

}

38.1.3 Closer - preroll

Configure closer for preroll.

Supported format: mp3, wav

{
"ad_preroll_closer": [

"https://streamabc-audio-content.s3.eu-central-1.amazonaws.com/testfiles/563935__
→˓fester993__guitar-trombone-reverb.wav"
],

}

38.1.4 Grace time

The grace time, in seconds, is the time during the QuantumCast Streamer service should ignore ad triggers. This timer
starts immediately after an ad trigger with a successful impression.

grace_time

grace time between midrolls

grace_time_preroll

grace time from preroll to first midroll

grace_time_reconnect

grace time between prerolls in case of reconnect

{
"grace_time": 600,
"grace_time_preroll": 900,
"grace_time_reconnect": 30

}

90 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

38.1.5 Disable Preroll Ads

Preroll spots for an active session can be suppressed using the URL query parameter context with value fHA6LTE=
(AIS default parameter): http://streamurl/?context=fHA6LTE=

Further configuration for ads like ad duration, number of ads as well as disabling ads in general can be done using
tokens (JWT). This is the preferred way for the most flexibility but needs more work to implement on the client side.

38.1.6 Disable All Ads

Using a special advanced configuration it is possible to disable all ads for a specific session.

{
"no_ad_parameter": "noads"

}

This configured parameter has to be passed as value of the URL query parameter context. For the example above this
would lead to: http://streamurl/?context=noads

Keep in mind that everyone that knows this value can suppress ads in your stream. So it is recommended to use this
parameter for specific purposes only. It can be changed on the fly if the value is misused or leaked.

For a more secure way to do this it is also possible to use tokens (JWT). Tokens have a limited lifetime and can not be
used for multiple sessions.

38.1.7 Max. ad duration per session

The max. ad duration per session, in seconds, indicates the maximum offset that the listener may have in the session.
This could be necessary, for example, if the listener listens to the channel all day.

{
"ad_duration_max": 900

}

38.2 Geoblocking / Geostreaming

In disallowed countries an audio file is played and the stream stopped.

{
"geo_allow_countries": ["DE","AT"],
"geo_fallback": "https://url.zu.einer.audiodatei",
"geo_active_hours": [20,21]

}

geo_allow_countries Array specification of which countries are allowed to stream freely, all others are blocked;
specify as ISO code

geo_fallback URL to a file that is played as an announcement

geo_active_hours Optional array with hours as a number when blocking is active. If it is always to be active, omit
this block or specify an empty array.

38.2. Geoblocking / Geostreaming 91

http://streamurl/?context=fHA6LTE=
http://streamurl/?context=noads

QuantumCast Platform Documentation, Release 1.4.5.4

38.3 Authentication

38.3.1 Basic access

The simplest technique for enforcing access controls.

{
"mountacl": {

"username": "",
"password": ""

}
}

38.3.2 Token access

QuantumCast supports authentication by using a Token. Token-Based Authentication, relies on a signed JSON Web
Token (JWT) that is sent to the server on each request.

38.4 Auto switch to fallback stream

The Auto Switch function can be used to replace an audio source that is no longer available - for example, as a fallback
for a simulcast.

38.4.1 Workflow

Create a new additional source for this channel with the right incoming bitrate and select the fallback master server.

When creating listener mounts transcoding should be “forced”. Otherwise transcoding will be skipped if the source
and listener mount have the same spec (e.g. same bitrate/format). The fallback mechanism is part of our transcodings
so it needs to be enabled.

A special setting for the channel has to be created in “Advanced Settings”. This is the place for all settings that don’t
have an UI and is written in JSON.

92 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

38.4.2 Description Structure of the JSON document

• parameters silence, noise and threshold are freely configurable

• configuration per channel

• transcoding feature necessary

{
"fallback": {

"url": "http://api.streamabc.net/sources/mounts/redirect/qc_0dm7w3mdgo3b_koaz",
"max_silence": "10",
"min_noise": "10",
"threshold": "-30"

}
}

fallback is the Key for the settings

url is the StreamURL of the fallback stream. You can just copy the URL of the source here. However, we have a
special service that redirects to the source if a channelkey (our unique ID for a channel) is given. It auto-selects fallback
mounts. The syntax is http://api.streamabc.net/sources/mounts/redirect/<channelkey> Just use the channelkey of the
current channel here. You can find it under “Setup”

max_silence is the number of seconds that the stream has to be silent before switching to fallback

38.4. Auto switch to fallback stream 93

http://api.streamabc.net/sources/mounts/redirect

QuantumCast Platform Documentation, Release 1.4.5.4

min_noise is the number of seconds without silence before switching back

threshold is the audio level in dB that is considered silence

38.5 Troubleshooting

38.5.1 Audio glitching

Audio glitching means crackling, popping, and other sound problems. They can occur for a variety of reasons.

Glitches after instream ads

Glitches after instream ads can occur if bit reservoirs are used in the encoder. If an MP3 file or stream is encoded with
bit-reservoir feature enabled then the consecutive frames depend on each other. In the case of in-stream ads, the stream
is cut exactly at the trigger point. During this process, dependent frames in the stream can be separated and heard as
glitches.

38.6 Logfileimport per Logimporter

The QuantumCast Logimporter is a dedicated software tool, distributed as executable binary, that can be used to transmit
log data in a secure and GDPR safe way to the QuantumCast big data platform. It can be used to send a log file at once
or (preferred) to continously send new log entries in realtime by “tailing” files.

The latest version can be downloaded here:

• Linux 64Bit: https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter-linux-amd64

• Windows 64Bit: https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter.exe

• MacOS Intel 64Bit: https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter-mac

All binaries are built static and have no further system requirements and are used as a command line tool.

Logimporter supports several import formats, log format types and output types. The configuration is provided using
command line values and flags (or environment variables).

The configuration is divided into 3 parts:

• input: defines what input type should be used v

• parser: defines what log file type is provided and wich parser should be used

• output: defines output of the parsed data and specifies an origin as identifier that you get from QuantumCast

The usage in general:

./logimporter input:file –path="./logs/access.log" parser:icecast output:amqp –origin=xxx

Hint: The value xxx in the examples as in -origin=xxx has to be substituted by the value provided by QuantumCast.

The -help flag shows a help note and can be used for every sub-command (input, parser, output)

./logimporter -help

94 Chapter 38. Cloud Operators

https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter-linux-amd64
https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter.exe
https://streamabc-sw.s3.eu-central-1.amazonaws.com/logimporter/logimporter-mac

QuantumCast Platform Documentation, Release 1.4.5.4

38.6.1 Input Plugins for Logfiles

The input plugin is configured by the prefix “input:” followed by the wanted input type.

One of the following input types can be used:

input:file –path=/path/to/file

The provided file will be read, parsed and sent to QuantumCast. After this, the programs exits. You need to provide a
path to an existing file. It is possible to use Gzip compressed files with the suffix .gz.

input:fileglob –path=/path/to/files*.log

All files that match the provided glob pattern are read, parsed and sent to QuantumCast. After all files are processed,
the program exists. It is possible to use Gzip compressed files with the suffix .gz.

input:tail –path=/path/to/file

Continuously reading of new data in a file. This works like the “tail” command and keeps reading new lines until the
program is stopped manually. It supports log rotation if the new file gets the same name. This is the preferred way to
use in production environments to get realtime logs.

Additional flags for input:tail:

-whence=end or start

Start reading the file from end or beginning/start of the file. Default is end.

-listen=127.0.0.1:8008

Opens a HTTP server and binds to to provided address and port that can be used for health checks. In this
example a call to http://127.0.0.1:8008 either returns a status 200 if everything is ok or a higher status if
something does not work.

-polling

User polling instead of fsnotify for getting notified of new lines. Preferred is the default fsnotify.

-scanheader

Can be used to read the field definitions in W3C compatible AIS log files.

Hint: The Healthcheck can be use to monitor the input.

38.6. Logfileimport per Logimporter 95

http://127.0.0.1:8008

QuantumCast Platform Documentation, Release 1.4.5.4

38.6.2 Parser Plugins for Streaming-Server Logs

The desired parser can be configured with the prefix “parser:”. You need the right parser for the log file type you use.

parser:icecast

Parser for Icecast logs.

parser:ais

AIS 7 session log format.

-version=ais8

AIS 8 and above session format. It also tries to guess the right fields by reading the file header. Please note that the
AIS session log has to be used, not the access log.

38.6.3 Output Plugins for data transmission

The output plugin is configured usingthe prefix “output:”.

The available plugins are the following:

output:amqp

Logs are sent as AMQP messages to a QuantumCast message queue. This is the default and should only be changed if
requested. You need to open port 5672 for outgoing TCP.

Additional Flags for output:amqp:

-origin=xx

Mandantory field. The value will be provided by QuantumCast and is used to assign incoming log data to
the right customer.

-streamwatch

Optional. Should only be used if requested by QuantumCast.

output:noop

Test output “dry run”. No data is sent and it can be used to check if everything is working.

Additional flags for output:noop:

-output

Output parsed log data to stdout.

output:http

Send data using HTTPS to an ingest endpoint. Can be used if AMQP is not possible due to port restrictions and is
requested by QuantumCast. Please note that this is less reliable as AMQP and can lead to loss of some log data under
certain circumstances.

96 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

Additional flags for output:http:

-origin=xx

Mandantory field. The value will be provided by QuantumCast and is used to assign incoming log data to
the right customer.

-streamwatch

Optional. Should only be used if requested by QuantumCast.

If “tail” mode is used the program runs indefinitely. In this case it is adviced to use a start-up script that manages the
process. For instance on modern Linux systems you can use a systemd unit file.

Example for a SystemD unit file

[Unit]
Description=QuantumCast Logimporter
Wants=network-online.target
After=network-online.target

[Service]
ExecReload=/bin/kill -HUP $MAINPID
ExecStart=/usr/local/bin/logimporter-linux-amd64 input:tail –path=/var/log/icecast/
→˓access.log parser:icecast output:amqp –origin=xxx
User=icecast
KillMode=process
KillSignal=SIGINT
LimitNOFILE=infinity
LimitNPROC=infinity
Restart=on-failure
RestartSec=2
StartLimitBurst=3
StartLimitIntervalSec=10
TasksMax=infinity

[Install]
WantedBy=multi-user.target

The following parameters need to be changed and adapted to your needs:

• Path to the program itself (here /usr/local/bin/logimporter-linux-amd64)

• Path to the log file (here /var/log/icecast/access.log)

• User (here icecast)

Examples for starting the Logimporter

./logimporter input:tail -path=/path/to/logfile parser:ais output:amqp -
→˓origin=xxx

(continues on next page)

38.6. Logfileimport per Logimporter 97

QuantumCast Platform Documentation, Release 1.4.5.4

(continued from previous page)

./logimporter input:file -path=/path/to/logfile parser:ais output:amqp -
→˓origin=xxx

./logimporter input:fileglob -path=/path/to/logfiles* parser:ais output:amqp -
→˓origin=xxx

38.6.4 Re-delivery of missing logs

If some logs have not beend sent in tail mode because of errors or network issues, it is possible to use the normal file or
fileglob mode to re-delivery the missing data. Since version v3.1.0 there are new flags to restrict the logs to a specific
time range: -after="YYYY-MM-DD HH:mm:ss and -before="YYYY-MM-DD HH:mm:ss can be provided to restrict to
data before and after the given dates.

The flags can be used individually or in combination. Both are global flags and need to go before the input defintion.

If you know the exakt time when for instance an error occured and data is missing, you can use -after to send all logs
after this date regardless of the timespan the log covers.

If you know the point in time since when everything worked fine again, use this time with -before.

The full call could be something like this:

logimporter -after="2022-03-04 19:15:25" input:file –path="./logs/access-2022-03-04.log.
→˓gz" parser:icecast output:amqp –origin=xxx

38.6.5 Healthcheck

To start the HTTP server and enable /health endpoint, use the -listen flag.

Example:

-listen=127.0.0.1:8080 starts the HTTP server and connects it to IP 127.0.0.1 and port 8080. http://127.0.0.1:
8080/health can be used to call the health check. It returns HTTP status 200 if everything is OK. If not enough new
log lines were processed via input plugins for logfiles in the interval “-alertInterval 300” (default 300s), status 500 is
returned.

If the IP is omitted for -listen, the health check uses all IPs that are configured -listen :8080

38.7 MetaPort

38.7.1 Delay metadata

In advanced settings you can specify that the incoming metadata should be delayed (in seconds).

{
"metadata_delay": 30

}

98 Chapter 38. Cloud Operators

http://127.0.0.1:8080/health
http://127.0.0.1:8080/health

QuantumCast Platform Documentation, Release 1.4.5.4

38.8 MetaSpreader configuration settings

MetaSpreader supports configuring your metadata receivers as JSON in the Console.

Your Console > Edit Channel > Metaflow > MetaSpreader

Console

{
"radioplayer": {

"stationid": "--old Station ID",
"email": "-- email of account (required)",
"apikey": "-- apikey (required)",
"typ": "radioplayercloud"

},
"radio.de": {

"broadcast": "",
"apikey": "",
"typ": "radio.de"

},
"jsonpush_1": {
"channelname": "my audiostream name 1",
"url": "https://playerwebsite1/metadata-input",
"typ": "jsonpush"

},
"jsonpush_2": {
"channelname": "my audiostream name 2",
"url": "https://playerwebsite2/metadata-input",
"typ": "jsonpush"

},

}

38.8.1 POST request with JSON payload

{
"jsonpush_1": {

"channelname": "my audiostream name 1",
"url": "https://playerwebsite1/metadata-input",
"typ": "jsonpush"

},
"jsonpush_2": {

"channelname": "my audiostream name 2",
"url": "https://playerwebsite2/metadata-input",
"typ": "jsonpush"

},

}

Note: The content of POST is like Metadata data-set reference

38.8. MetaSpreader configuration settings 99

QuantumCast Platform Documentation, Release 1.4.5.4

38.8.2 Radioplayer

{
"radioplayer": {

"stationid": "--old Station ID",
"email": "-- email of account (required)",
"apikey": "-- apikey (required)",
"typ": "radioplayercloud"

}
}

Radioplayer Unique ID:

{
"radioplayer": {

"rpuid": "--Radioplayer Unique ID",
"email": "-- email of account (required)",
"apikey": "-- apikey (required)",
"typ": "radioplayercloud"

}
}

When using the Radioplayer Unique ID, an additional “territoryid” can be entered if required; by default it is 276
(Germany).

Old:

{
"radioplayer": {

"url": "https://ingest.radioplayer.de/ingestor/metadata/v1/np/",
"stationid": "",
"user": "",
"pass": "",
"typ": "radioplayer"

}
}

38.8.3 Radio.de (radio.net)

{
"radio.de": {

"broadcast": "",
"apikey": "",
"typ": "radio.de"

}
}

100 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

38.8.4 TuneIn

{
"tunein": {

"partnerID": "",
"partnerKey": "",
"stationID": "",
"typ": "tunein"

}
}

38.8.5 Cover Brands Are Live

{
"brandsarelive": {

"id": "1554",
"default_cover": "https://url.zu.einem.cover",
"typ": "brandsarelive"

}
}

The name “brandsarelive” is freely definable.

id You get the ID for the cover from Brands Are Live.

default_cover If no cover data is available, the default cover is sent.

typ The type must be “brandsarelive” to send metadata to this provider.

38.8.6 Icecasts/AIS

{
"source_icecast": {

"icecast": "hostname:port",
"mount": "/mountname",
"user": "admin",
"pass": "",
"typ": "icecast"

},
"source_ais": {

"icecast": "hostname:port",
"mount": "/mountname",
"user": "admin",
"pass": "",
"typ": "icecast"

}
}

38.8. MetaSpreader configuration settings 101

QuantumCast Platform Documentation, Release 1.4.5.4

38.8.7 FTP-Server

{
"myftpserver1": {

"channelname": "my audiostream name",
"host": "myftpserver.io:21",
"user": "",
"pass": "",
"template": "myservice.xml.tmpl",
"filename": "directory/filename.xml",
"typ": "ftp"

}
}

template
template describes the content of filename

38.8.8 Amqp

{
"amqp1": {

"brandid": "",
"channelkey": "",
"typ": "amqp"

}
}

Tip: Related topics

• Metadata data-set reference

• MetaPort API Specification

• Metaflow

38.9 MusicMaster Scheduling Workflow

QuantumCast has created APIs that allow media companies to connect their existing software systems (e.g. Music-
Master, Dabis, Zenon) to the cloud playout.

The API can be used under the following conditions:

• the specified XML format can be exported from Musicmaster

• all required fields in the XML are filled in

• the import trigger must be triggered repeatedly if audio elements are missing

102 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

38.9.1 Workflow

1. Audio files export

2. Audio meta data export

3. MusicMaster Scheduling export

1. Audio files export:

• Export as MP3

• Upload via FTP or clients that support s3-APIs

• The name of the file has to be unique and match with the ID or ArchivNumber.

2. Meta data export:

• Export the meta data files from the broadcast system and upload via FTP or s3-client.

• Meta data must be linked to audio files by ID or ArchivNumber.

3. MusicMaster Scheduling:

• Export the MusicMaster scheduling as XML

• The XML indicates which audio files are used by referencing the ID or ArchivNumber of the audio files.

• One XML per broadcast hour OR one XML per day

• The targeted channel needs to be enabled by QuantumCast first.

• Reference the QuantumCast channel by providing the channel key as StationName in the XML file.

• Upload via FTP or s3-Client

• The finished upload automatically triggers the import process.

• Audio files will be added to the QuantumCast audio library, scheduled will be transformed to the internal format
and pushed to the QuantumCast console.

• The reset of the schedules is set to midnight by default. It is possible to change the reset to any hour - this must
be set up by a QuantumCast staff member.

38.9. MusicMaster Scheduling Workflow 103

QuantumCast Platform Documentation, Release 1.4.5.4

Upload files via FTP or s3-client (rClone etc.) and wait. If the file is in the “processed”-folder, it has been processed.
If you want to update the scheduling, audio files or audio metadata, simply re-upload the file again.

Attention:

• All files must have a lower case file extension (.mp3, .xml, . . .)

• All audio files used in a MusicMaster scheduling must be present BEFORE, otherwise they are marked as
errors and skipped

• For all audio files that are used in a schedule but can not be found are created empty files with the missing
ID as name in the “requested”-folder. You can observe this folder and upload missing files. The reference in
the “requested”-folder is then deleted.

• Missing audio files are not automatically included in the schedule if they are sent subsequently - the scheduling
XML file must be uploaded again.

38.9.2 API

Audio files:

The system works internally with MP3. Therefore, we recommend providing MP3 files in high quality (44,100 Hz
sampling rate). In principle, MP2/MUS files can also be provided. But then we convert them internally. To get the best
quality, you should upload the files in the correct format.

Meta data export:

• For the audio files, the corresponding metadata is absolutely necessary.

• Two formats are supported: XML and CSV

• The file must have the same name as the audio file (ArchivNumber), but the extension .xml or .csv.

• In addition to the artist and song, the most important information is the duration, CueIn, CueOut, StartNext,
FadeIn, FadeOut and Intro.

• There is no automatic calculation of transitions. Exactly the values that are transferred via the metadata file are
used.

The XML already contains the names of the fields - the CSV is structured as follows:

"ID": 1,
"Name": 2,
"Title": 3,
"Etype": 4,
"CueIn": 5,
"CueOut": 6,
"Intro": 7,
"Outro": 8,
"Mix": 9,
"FadeIn": 10,
"FadeOut": 11,
"DbFadeIn": 12,
"DbFadeOut": 13,
"FadeType": 18,

(continues on next page)

104 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

(continued from previous page)

"Type": 19,
"StartNext": 30,

Example XML | Example CSV

Example of a scheduling:

• Schedule files must have the channelkey included in the StationName (additional text is ok): <Station
StationName="rtlb_98i4femse6_uemx">

• The schedule must contain only one date as AirDate tag (format is MM.DD.YYYY): <AirDate Date="07.
24.2022">

• Attention! If there is another AirDate with the same date in the same file, it OVERWRITES the other schedule.

• All hours must be specified within the AirDate tag.

• Each element needs an ID tag that references the audio file.

• Each element needs a runtime value (format mm:ss). If the runtime is 00:00, the element is played “on ramp” of
the following track.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<Station StationName="radio_98i4gehse2_uenx">

<AirDate Date="07.24.2022">
<AirHour Hour="00">

<Element>
<ID>S100166</ID>
<Artist>JINGLE</Artist>
<Title>Dropin - Jingle MANN 05</Title>
<AirTime>00:00:00</AirTime>
<Runtime>00:00</Runtime>
<NonMusic>Y</NonMusic>
<Ende></Ende>
<EAN></EAN>
<ISRC></ISRC>
<Label></Label>
<LC></LC>
<Verlag></Verlag>
<Komponist></Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element>
<Element>

<ID>33050M</ID>
<Artist>Spliff</Artist>
<Title>Carbonara</Title>
<AirTime>00:00:00</AirTime>
<Runtime>04:04</Runtime>
<NonMusic>N</NonMusic>
<Ende>F</Ende>
<EAN>0042283987128</EAN>
<ISRC></ISRC>
<Label>Polyphon</Label>
<LC>00310</LC>

(continues on next page)

38.9. MusicMaster Scheduling Workflow 105

https://docs.quantumcast-digital.com/projects/platform/en/stable/_static/files/11215M.xml
https://docs.quantumcast-digital.com/projects/platform/en/stable/_static/files/M22686.TXT

QuantumCast Platform Documentation, Release 1.4.5.4

(continued from previous page)

<Verlag>Edition Spliff</Verlag>
<Komponist>Heil/Klimek/Tykwer</Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element>
</AirHour>
<AirHour Hour="01">

<Element>
<ID>S100159</ID>
<Artist>JINGLE</Artist>
<Title>Dropin - Jingle FRAU 01</Title>
<AirTime>01:00:00</AirTime>
<Runtime>00:00</Runtime>
<NonMusic>Y</NonMusic>
<Ende></Ende>
<EAN></EAN>
<ISRC></ISRC>
<Label></Label>
<LC></LC>
<Verlag></Verlag>
<Komponist></Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element>
<Element>

<ID>13572M</ID>
<Artist>Amanda Lear</Artist>
<Title>Follow Me</Title>
<AirTime>01:00:00</AirTime>
<Runtime>03:38</Runtime>
<NonMusic>N</NonMusic>
<Ende>F</Ende>
<EAN>4013659660033</EAN>
<ISRC></ISRC>
<Label>Target</Label>
<LC>04520</LC>
<Verlag>Arabella Musikverlag GmbH</Verlag>
<Komponist>A.Monn, A. Lear</Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element>
</AirHour>
<AirHour Hour="02">

<Element>
<ID>S100157</ID>
<Artist>JINGLE</Artist>
<Title>Dropin - Jingle FRAU 03</Title>
<AirTime>02:00:00</AirTime>
<Runtime>00:00</Runtime>

(continues on next page)

106 Chapter 38. Cloud Operators

QuantumCast Platform Documentation, Release 1.4.5.4

(continued from previous page)

<NonMusic>Y</NonMusic>
<Ende></Ende>
<EAN></EAN>
<ISRC></ISRC>
<Label></Label>
<LC></LC>
<Verlag></Verlag>
<Komponist></Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element>
<Element>

<ID>24162M</ID>
<Artist>Klingande</Artist>
<Title>Jubel</Title>
<AirTime>02:00:00</AirTime>
<Runtime>03:16</Runtime>
<NonMusic>N</NonMusic>
<Ende>C</Ende>
<EAN>9715800109716</EAN>
<ISRC>FR9W11310765</ISRC>
<Label>B1 Recordings</Label>
<LC>16158</LC>
<Verlag>EMI Music Publishing France / Klingande Music / Sony ATV</Verlag>
<Komponist>Cédric Steinmyller , Edgar Catry</Komponist>
<Info1></Info1>
<Info2></Info2>
<Info3></Info3>

</Element
</AirHour>

</AirDate>
</Station>

Description Structure of the XML document:

• ID (string mandatory) - archive number

• Artist (string mandatory) - artist name

• Title (string mandatory) - song name

• AirTime (time highly recommended) - format hh:mm:ss

• Runtime (time mandatory) - length of the audio item

• NonMusic (bool highly recommended) - is the audio item music (N) or not (Y)

• Ende (bool)

• EAN (string) - EAN code

• ISRC (string highly recommend) - International Standard Recording Code

• Label (string) - label name

• LC (string) - label code

• Verlag (string) - publisher name

38.9. MusicMaster Scheduling Workflow 107

QuantumCast Platform Documentation, Release 1.4.5.4

• Komponist (string) - composer’s name

• Info1 (string) - more information about the audio item

• Info2 (string) - more information about the audio item

• Info3 (string) - more information about the audio item

38.9.3 More workflows

Automatic uploads:

• Observe the “requested”-folder for new elements and upload them to the server.

• To fill the audio library send schedules and upload the requested audio files.

• The references in the “requested”-folder will be deleted after sucesfull imports.

• Upload the schedule again until no new elements are found.

38.9.4 Troubleshooting

The mixing does not sound good:

• deactivate sound processing

• show CueIn, CueOut, FadIn, FadeOut and StartNext values in the protocol of the console and compare them with
the values from the XML.

• If these values differ, the transfer was not correct.

108 Chapter 38. Cloud Operators

CHAPTER

THIRTYNINE

INDICES AND TABLES

• genindex

For more information please visit our company website:

109

QuantumCast Platform Documentation, Release 1.4.5.4

110 Chapter 39. Indices and tables

HTTP ROUTING TABLE

/https:
GET https://api.streamabc.net/metadata/channel/(string:channelkey).json,

86
GET https://metadata.streamabc.net/metapush/(string:channelkey)/(string:token),

81
POST https://metadata.streamabc.net/metapush/(string:channelkey)/(string:token),

82

111

QuantumCast Platform Documentation, Release 1.4.5.4

112 HTTP Routing Table

INDEX

A
Adflow, 17
Advisor, 71
aggregator

configuration value, 52
API, 67
artist

configuration value, 79
Audiobutler, 35
Audiocache, 33
Audiolibrary, 27
Audioport, 21
Audiostreamer, 13
Audiotools, 29
Authentication, 53, 91
autoswitch, 92
aw_0_req.gdpr
configuration value, 87

aw_0_req.userConsentV2
configuration value, 87

B
Basic Authentication, 92
brandid
configuration value, 79

C
channelkey

configuration value, 79
channelname

configuration value, 79
channelshortname

configuration value, 79
Closer, 89, 90
CloudConnect, 59
CloudOps_MetaPort, 98
configuration value

aggregator, 52
artist, 79
aw_0_req.gdpr, 87
aw_0_req.userConsentV2, 87
brandid, 79

channelkey, 79
channelname, 79
channelshortname, 79
cover, 80
cstring, 87
domain, 52
duration, 79
etype, 80
format, 52
id, 79
identifierid, 78
idsv1, 78
listenerid, 52
m3u, 52
m3u8, 53
parameters, 52
pls, 52
programkey, 52
separator, 80
song, 79
template, 102
time, 79
timezone, 80
tracking, 53
value, 78

Consent, 87
cover
configuration value, 80

cstring
configuration value, 87

D
Data analytics, 65
Disable Ads, 90
domain
configuration value, 52

duration
configuration value, 79

Dynamic scheduling, 37

E
etype

113

QuantumCast Platform Documentation, Release 1.4.5.4

configuration value, 80
External scheduling tools, 41

F
format

configuration value, 52

G
GDPR, 87
Geoblocking, 91
Geostreaming, 91
Glitch, 94
Grace time, 90

H
Health status, 73
Hörer-IDs, 77

I
id

configuration value, 79
identifierid

configuration value, 78
idsv1

configuration value, 78

L
Listener-IDs, 77
listenerid, 77
configuration value, 52

Logimporter, 61, 94
LogProcessing, 63

M
m3u
configuration value, 52

m3u8
configuration value, 53

Max. ad duration per session, 91
Metadata data-set, 78
Metadata receivers, 98
Metadata send to Aggregators, 98
Metaflow, 16
metaid, 77
MetaPort, 57, 80, 84
MetaSpreader, 55, 98
Midroll, 89
MusicMaster, 102

N
Notification service, 9

O
Opener, 89

P
parameters

configuration value, 52
Playerservices, 47, 84
Playout, 25
PlayoutFlow, 19
pls

configuration value, 52
Preroll, 89, 90
programkey

configuration value, 52
Push Metadata, 80, 84

S
Self-Service-Console, 3
separator

configuration value, 80
Sequence editor, 39
Skip-On-Radio, 43
song

configuration value, 79
Sound processing, 31
SpotControl, 5
StreamControl, 8
Streamrecorder, 11
StreamRoute, 49
Streamwatch, 69

T
TCF, 87
template

configuration value, 102
time

configuration value, 79
Timeshift, 45
timezone

configuration value, 80
Token Authentication, 92
tracking

configuration value, 53
Transcoding, 23
Trigger, 90
Troubleshooting, 94

V
value

configuration value, 78
Vendor, 87

114 Index

	What is QuantumCast?
	Self-Service-Console
	SpotControl
	StreamControl
	Notification Service
	Streamrecorder
	Audiostreamer
	Features
	Ad-Features

	Metaflow
	Adflow
	Playoutflow
	AudioPort
	Transcoding
	Playout
	Audiolibrary
	Audiotools
	Sound processing
	QuantumCast-Sound processing
	Stereo Tool

	Audiocache
	Audiobutler
	Dynamic Scheduling
	QuantumCast-Sequence editor and Dynamic Scheduler
	External scheduling tools – MusicMaster, GSelector or others
	Skip-On-Radio
	Timeshift
	Playerservices
	StreamRoute
	Request listener audio streams
	URL-Scheme
	Parts of audio stream request
	Request audio streams via media file (m3u/pls/m3u8)
	Parameters

	Protected streams, Authentication
	MetaSpreader
	MetaPort
	CloudConnect
	Logimporter
	LogProcessing
	Data Analytics
	APIs
	Streamwatch
	Advisor
	Health
	Developers
	Listener ID and Meta ID
	Listener IDs and listener IDs containers (WORKING DRAFT)
	Build the listener IDs container
	Submit Listener IDs
	Predefined identifier IDs

	Metadata data-set reference
	MetaPort API Specification
	Push metadata

	Playerservices Endpoints
	Polling
	Websockets
	Listener specific Metadata

	Integrating a TCF 2.0 CMP Consent
	Uri parameters

	Cloud Operators
	Ad insertion capabilities
	Opener and closer - instream / midroll
	Opener - preroll
	Closer - preroll
	Grace time
	grace_time
	grace_time_preroll
	grace_time_reconnect

	Disable Preroll Ads
	Disable All Ads
	Max. ad duration per session

	Geoblocking / Geostreaming
	Authentication
	Basic access
	Token access

	Auto switch to fallback stream
	Workflow
	Description Structure of the JSON document

	Troubleshooting
	Audio glitching
	Glitches after instream ads

	Logfileimport per Logimporter
	Input Plugins for Logfiles
	Parser Plugins for Streaming-Server Logs
	Output Plugins for data transmission
	Re-delivery of missing logs
	Healthcheck

	MetaPort
	Delay metadata

	MetaSpreader configuration settings
	POST request with JSON payload
	Radioplayer
	Radio.de (radio.net)
	TuneIn
	Cover Brands Are Live
	Icecasts/AIS
	FTP-Server
	Amqp

	MusicMaster Scheduling Workflow
	Workflow
	API
	More workflows
	Troubleshooting

	Indices and tables
	HTTP Routing Table
	Index

